Announcing the Ideal Weight Program

I often receive requests from people asking for my overall perspective on fat loss and health.  I share my opinions here, but they're scattered throughout hundreds of posts, there's a lot I haven't had a chance to write about, and I rarely give practical recommendations.  However, I knew I'd eventually put everything together into a cohesive fat loss program-- it was only a matter of finding the right opportunity.

That opportunity presented itself in 2011 when I met Dan Pardi, a researcher whose work focuses on sleep and food intake, and the CEO of a company called Dan's Plan.  I was immediately impressed by Dan because he stood out as someone with a high level of expertise in sleep and physical activity, as well as someone who has successfully lost a substantial amount of fat and kept it off for several years.


Dan and his team had developed a set of unique and engaging tools for tracking weight, sleep, and physical activity to help people maintain daily mindfulness over the simple fundamentals of health.  These tools are 100 percent free and incredibly easy to use, particularly if you sync them with an electronic scale and step counter.  When synced with these devices, the Dan's Plan website automatically uploads and displays your weight, sleep, and physical activity score, as well as integrating them all into a single user-friendly Health Zone Score that lets you know your overall performance at a glance.  Even if you have no interest in fat loss, I highly recommend using the free tracking tools on the Dan's Plan site-- I do.

Glucagon, Dietary Protein, and Low-Carbohydrate Diets

Glucagon is a hormone that plays an important role in blood glucose control.  Like insulin, it's secreted by the pancreas, though it's secreted by a different cell population than insulin (alpha vs. beta cells).  In some ways, glucagon opposes insulin.  However, the role of glucagon in metabolism is frequently misunderstood in diet-health circles.

The liver normally stores glucose in the form of glycogen and releases it into the bloodstream as needed.  It can also manufacture glucose from glycerol, lactate, and certain amino acids.  Glucagon's main job is to keep blood glucose from dipping too low by making sure the liver releases enough glucose.  There are a few situations where this is particularly important:

  1. Hypoglycemia.  When blood sugar drops below a certain threshold, for example if a diabetic injects too much insulin, the brain senses it and initiates a response (the counterregulatory response) to bring glucose back up and prevent unconsciousness and death.  Glucagon release is an important part of this response.
  2. Fasting.  Glucagon helps support blood glucose levels during fasting, when glucose intake is zero, by stimulating the production and release of glucose by the liver.  This sustains the brain, which has an absolute requirement for glucose (though it can derive some energy from ketones).
  3. High-protein meals.  Protein stimulates insulin release as much as carbohydrate does (because one of insulin's jobs is to send amino acids into lean tissues such as muscle), but protein doesn't supply rapid glucose like carbohydrate does.  If this process went unchecked, eating a high-protein meal would cause hypoglycemia because insulin release would suppress blood glucose too much.  Glucagon release counterbalances insulin, preventing hypoglycemia when we eat a high-protein meal.

New Review Paper on Dietary Fat and Heart Disease Risk

A new review paper on dietary fatty acids and heart disease risk was just published by Dr. Rajiv Chowdhury and colleagues in the Annals of Internal Medicine-- one of the top medical journals (1).  The goal of the paper is to comprehensively review the studies evaluating the effect of dietary fatty acids on heart (coronary) disease.  The review covers observational and intervention studies pertaining to saturated, monounsaturated, trans, omega-6 polyunsaturated, and omega-3 polyunsaturated fats.  The paper is notable for its comprehensiveness (inclusion criteria were very lax).

Here is a summary of the results:

  • In observational studies that measured diet, only trans fat was related to cardiovascular risk.  Saturated, monounsaturated, and polyunsaturated fats were unrelated to risk.
  • In observational studies that measured circulating concentrations of fatty acids, long-chain polyunsaturated fatty acids (DHA, DPA, EPA, AA) were associated with lower risk.  The dairy-fat-derived margaric acid (17:0) was also associated with lower risk.  No other fatty acids were related to risk, including trans fatty acids.
  • In controlled trials, supplementation with omega-3 or omega-6 fatty acids did not alter risk.
The authors conclude:
In conclusion, the pattern of findings from this analysis did not yield clearly supportive evidence for current cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of saturated fats.  Nutritional guidelines on fatty acids and cardiovascular guidelines may require reappraisal to reflect the current evidence.